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A Numerical Analysis of Surface
Diffusion in a Binary Adsorbed Film*:{

G. F. ROUND, H. W. HABGOOD, and R. NEWTON

RESEARCH COUNCIL OF ALBERTA, EDMONTON, ALBERTA

Summary

Based on the assumptions that the adsorption of a binary gas mixture may
be described by Langmuir isotherms and that the rate of diffusion into the
interior of the adsorbent is proportional to the gradient in chemical poten-
tial, equations are developed to describe the adsorption of a binary mixture
by a slab and by a sphere. The equations describing the concentration
changes of each component are coupled nonlinear second-order partial dif-
ferentials and were solved numerically for the following boundary condi-
tions (normalized concentrations 8 of the components at the surface): 6,:0y =
0.05:0.90, 0.05:0.05, 0.475:0.475, and 0.875:0.095 and ratios of diffusivi-
ties, Ly/Lg = 2, 10, and 200. Profiles of concentration against distance into
a slab or sphere and also curves of total uptake against time (all in dimen-
sionless form) were obtained. The distinctive feature of the results is that
the component of higher diffusivity advances ahead of the second compo-
nent and tends to attain temporary local concentrations much higher than
the equilibrium values at the boundary. Consequently, the total uptake of
the more-mobile component may pass through a maximum. These effects
are most pronounced when the difference in diffusivities is large, when
the equilibrium concentration of the component of higher diffusivity is
small, and when the total equilibrium concentration of the two components
is large. The calculations were applied to previously reported results of
the adsorption of nitrogen-methane mixtures by zeolite A and were found
to give reasonable correlations between the behavior of mixtures and that
of the individual pure components. In the case of near saturation (8, + 6; —
1 at the boundary), the fit with experiment is particularly sensitive to the
exact value of (1 — 6, — 03).

* Contribution No. 334 from the Research Council of Alberta, Edmonton, Canada.
t Additional information and details relating to this work are deposited with Re-
search Council of Alberta and copies may be obtained on request from the librarian.
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Separations using selective adsorption of one component from
a mixture usually are based on differences in adsorptive affinity
of the various components. These affinities are equilibrium proper-
ties and the behavior of a mixture can usually be estimated from
a knowledge of the behavior of the individual components. Such
is also often the case with molecular-sieve-type adsorbents—here
a component may show negligible adsorption, because its mole-
cules are too large to penetrate the fine channels of the adsorbent.
The selective adsorption of straight-chain paraffin hydrocarbons
from mixtures containing branched-chain and cyclic hydrocarbons
by the calcium form of zeolite A (molecular sieve 5A) is a well-
known example. Interesting possibilities arise, however, when
the molecular-sieve action is incomplete, i.e., when compounds
may be adsorbed but at relatively slow rates because of the slow
diffusion processes by which they penetrate into the interior of
the adsorbent. If the diffusivities of the various components are
different from each other, the composition of the adsorbed phase
will change with time and a true equilibrium adsorption is obtained
only after a long time. Barrer and Robins (I) have summarized
the various possible combinations that may arise with binary mix-
tures depending on the relative adsorptivities and diffusivities of
the two components. They also list examples for the different situ-
ations taken from studies with dehydrated crystalline zeolites
which, because of their regular crystal structure, show well-marked
molecular-sieve properties.

From the point of view of practical separations, one of the most
interesting of the cases listed by Barrer and Robins involves ad-
sorption from a binary mixture in which the component having the
greater affinity for the adsorbent is also the more slowly diffusing
component. Here it is possible that the component having the
lower adsorptivity may yet be preferentially taken up during the
early stages of adsorption. An example of such a system previously
reported (2) from this laboratory is the adsorption of mixtures of
nitrogen and methane by the sodium form of zeolite A. Methane
is more strongly adsorbed than nitrogen but the rate of diffusion
of nitrogen into the crystal is higher than that of methane. In the
early stages of adsorption of nitrogen-methane mixtures by out-
gassed zeolite, nitrogen is preferentially adsorbed, sometimes to
such a degree that the amount taken up may temporarily be greater
than that corresponding to the final equilibrium adsorption. It is
thus possible to selectively remove either nitrogen or methane from
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the gas mixture, depending upon whether the process is terminated
in a short or a long time. The equilibrium condition achieved at
long times and corresponding to preferential adsorption of methane
was found to be roughly predictable using a mixed Langmuir iso-
therm; the transient condition during which nitrogen is preferen-
tially adsorbed depends upon both adsorptivities and diffusivities,
and the complex relationships involved are the subject of this
present paper.

For such a system the rate-determining steps appear to be the
activated diffusion of each species through the regular network
of intracrystalline channels of the adsorbent. These channels are
windows connecting a regular array of cavities, each large enough
to contain several adsorbate molecules. The windows, however,
are of such a size that a significant activation energy is required
before molecules can pass through. The effective diameter of a
nitrogen molecule is smaller than that of a methane molecule, so
the activation energy for movement of nitrogen through the crystal
of zeolite A is somewhat lower than for methane.

It was suggested that a satistactory description of this system
could be made by assuming diffusion to occur under a gradient in
chemical potential, with the equilibrium surface concentrations
being described by a Langmuir isotherm. The more usual treatment
of diffusion in terms of the gradient in concentration leads to highly
variable diffusion coeflicients and even to negative coefficients for
the “uphill” diffusion that must occur when the nitrogen uptake
exceeds its equilibrium value. As pointed out in the previous paper
(2), the concept of the gradient in chemical potential as the driving
force for diffusion has been used frequently; some authors, most
recently Meeks and Beveridge (3), have advocated the gradient in
activity as the fundamental driving force.

The present work is a theoretical extension of the earlier experi-
mental study through a numerical analysis of the equations devel-
oped for the assumption that the velocity of diffusion is proportional
to the gradient in chemical potential. Although conventional ex-
periments give only the total adsorption of a system of particles,
the computations show, in addition, the concentration profiles
through an individual particle. The results are presented in terms
of generalized coordinates for a range of parameters for the two
cases of adsorption into an infinite slab and into a sphere, represent-
ing experimental cases of diffusion into thin sheets and into par-
ticles. Within the range of parameters studied, an approximate
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comparison is made with the experimental results of the earlier
paper. These calculations are also of interest as being an example
of a numerical solution by finite-difference methods of a system
of coupled nonlinear second-order partial differential equations.

THEORETICAL

Derivation of the Fundamental Equations

Following the earlier treatment (2), the velocity of diffusion in
an adsorbed film is assumed to be proportional to the gradient in
the chemical potential,

A= _LAV.‘LA (D

where L, is the proportionality constant and u, is the chemical
potential of species A. The flux J, of diffusing material therefore
is given by the following equation, which corresponds to Fick’s
first law:

Ja=Caupn=—C,L,Vu, (2)

where C, is the concentration of A. In principle, a second term of
the form C,LA3Vuy should also be included, but as a first approach
the coeflicient L,y is assumed to be zero. From the equation of con-
tinuity one obtains

E)CA

+V () = (3)

For unidirectional flow in the x direction,
A
CALA _'(_ (4)

corresponding to Fick’s second law. A similar equation applies to
the second species, B,ina two-component mixture.

To apply these equations to an actual adsorbent-adsorbate sys-
tem the chemical potential must be related to the concentrations
of adsorbate in the adsorbent. If the gas at 1 atm is taken as the
standard state, the chemical potential of the adsorbate is given by
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pa=RT In p, (5)
MB = RT In PB (6)
where pag) is the partial pressure in atmospheres of gas A(B) in

equilibrium with the adsorbed film. For a binary adsorbed film
obeying the Langmuir isotherm,

— 0A
pA—bA(l_eA_OB) (7)
pB_bB(l_eA_oB) (8)

where 6, = C,/Cy and 6y = C3/Cy. Cy is the adsorbate concentra-
tion corresponding to a monolayer coverage, which is assumed the
same for both adsorbates. It follows that

s _ 1= 64
90, _bA(l_HA_OB)2 (9)
s _ Oa
(:)BB _bA(l—()A—OB)2 (10)
Differentiating Eq. (5) with respect to x, we obtain
s T 0pa_ FT (9P 90a , 0P 065 11
X pa 0x  pa (aeA ox = 90 ax) (

Substitution of py, 9ps/d8s and 9pa/86s from Egs. (7), (9), and
(10), respectively, results in

dus AT 36, 90y
9% Oa(1— 60— 62) [(1_93) x 0 W]

(12)

Substituting this function for du/ox in Eq. (4) and replacing C,
by 8,Cy gives

Bn_ 0 RTLs [ _ oy 80a o s

ot ox {l—oA—BB [(1 0s) ox *0a ax]} (13)
or

80s _  RTL, _ 826 4 %05

ot 1—0,—6g [(1 0s) a2 T 0a axz]

%TLA 69A 603 60A 893)
T O=0,-05)° [(1 ~0e) 5+ O a—x](‘a?*“ﬁ (14)
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and similarly for component B,

80s __ RTL, o s, 3%,
at_l—-OA—OB[(l 04) 2+038x }
%TLB 803 30/\ 803 (‘)OA
(I“BA—BD)2 [( aA)'—+0B 6x:|( + 7x> (15)

In the limiting case of the diffusion of a single component at
low concentration, Eq. (14) reduces to the usual expression of
Fick’s second law with a Fick diffusion coefficient equal to #TL,.

Finite-difference forms of Eqs. (14) and (15) were developed
(see the next section) to describe the diffusional behavior of a
binary-gas mixture in an adsorbed film for the one-dimensional
case, i.e., diffusion into an infinite plane slab.

The same theory can be generalized for three-dimensional dif-
fusion for which the equation corresponding to (14) expressed in
vector notation is

96, RTL,

oF — 1 - 0A — GB [(1 - BB)V20A + oszog]
RTL
+ (1 +_ GA_—A 03—)2 [(]. - 03)|V0A|2 -+ 0A|V03[2

+(1+460,—05)(V6) - (V8s)] (16)

For uniform spherical diffusion, 64 = 0,(¢, r), so V8, = (36,4/8r)i
(gradient of 8,) and V28, = (3%6,/ar*) + {(2/r)(80,/3r)] and Eq.
(16) takes the form

2 2
30s __ RTL, [(1_03) (a 0A+2raeA>+0A (a 03+2_%>]

a 1—60,—04 ar? arr r oor
RTL, 60A 603](80A 803)
+————(1_0A_03)2[( —0,) Py g, Wn)(Bn ) ()

for component A and

9y _ _ ATLy [ _ (m 2603) (azoA 2_%)]
at I—OA—OB[(I 0s) roar) O T T

RTL a6 304 | (00 30
T oy e [0 00 G e G5 5) v

for component B. As described later, it was found necessary for
reasons of the stability of some of the numerical computations to
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carry out a transformation of the independent variable and to re-
write Eqs. (17) and (18) in terms of the variable U = 1/r, giving
305 _ ATLAU* (.o, 8%,
ot 1—6,— {(1 0s) aU?
30y 1 B aa,\ 305]( 36 _ 90y
o, S0 g [ = 00 Dsr g, L]0 1 a9
30y RTLyU? { AN 03
ot —I_OA—OB (1 BA)
3%, 1 L 9 aaA (aoA 36,
S [(1 0 28+ g, 30a|(30s aU) (20)
Equations (17) and (18) or (19) and (20) were developed as finite-
difference equations for the numerical calculation of diffusion into

a sphere.”

Finite-Difference Equations for Determination of Concentration Profiles

Equations (14), (15), (17), (18), (19), and (20) were written in
explicit forward-marching finite-difference form (4) as follows:

(a) Infinite plane slab. Diffusion into an infinite plane slab
assuming equal concentrations of each component on each side of
the slab leads to a symmetric distribution of material about the
center plane of the slab. To describe this slab for the purpose of
computation, a mesh system in time and space was applied, with
equal time increments At and equal space increments Ax. A con-
centration 6(t, x) is then approximated by that at the nearest mesh
point (i At, j Ax) and the continuous function 6(t, x) is replaced by
a finite number of values 0(i, j), fori 2 0andj=1, ... ,N;i=0
is the starting time of the experiment, j = 1 is the center of the slab,
and j = N is the surface of the slab.

The first and second space derivatives were used in central
difference form:

a8, 0a(i, j+1) —0a(i,j—1)

(ﬁ) : 2 Ax (2D
%6 0., j+1)+0.(,j—1) — 20,0, j)
(asz) = A(Ax)z - (22)

® The corresponding equations for diffusion into a cylinder of finite length are
derived and included in the deposited material.
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where i is a time variable and j a space variable. The mesh is of
constant spacing Ax, so for a plane sheet successive increments
in thickness correspond to equal increments in volume. The time
derivative was expressed as a forward difference,

) _6a(i+ L) — 0,0 J)
at /1, At

(23)

The center of the slab is a plane of symmetry for the concentra-
tion of profiles. Thus, at this point (88,/dx);; = 0, and Eq. (22) for
the center point becomes

(’)201\ o 2[9A(i9 2) - HA('i, ].)]
(axz >i,1 N (Ax)?
Substituting Egs. (21) to (23) in (14) and (15) gives the complete
finite-difference equations for an infinite plane slab at the point
(i, j) representing the increments in concentration at that point
over the increase in time from i At to (i + 1) At:
B.(i + Lj) = A.r{(l - Hli(ivj))Dz(’A + aA(iaj)DzeB
+ [(1 - Bli(i’j))D(}A + ex\(iaj)D(}B]
X [DGA + Dgn]/[l - oA(iaj) - Bn(i, J)]}/[l
- 91\(1'9.7') - BB(iaj)] + BA(iaj) (25)
O (i + LJ') = Bm{(l - Q\(Lj))DzeB + 0(i, j)Dza,\
+ [(1 - HA(i,j))DGB + HB(ivj)DgA]
X [D91= + DOA]/[I - BA(i, ]) - Gls(i,j)]}/[l
— 0,01, 5) — 0s(i, j)] + 6s(i, j) (26)
where A, = #TL, AT/(Ax)?, B, = #TLy AT/(Ax)?, and the abbrevia-
tions D.0, and D8, are used for the differences,

Dy, =0,(i,j+1)+ 0,\(1',]' -1 - 204 (1, )
Do, = (9:\(1'».]' +1) — ()A(iaj —1))/2

(24)

with similar definitions for D,8; and D8,

(b) Sphere. Several sets of calculations were made for a given
set of boundary conditions; these involved the space derivatives
in various forms. The time derivative was put into forward-differ-
ence, forward-marching, explicit form—as in Eq. (22). The space
derivatives were put into differing forms, using both constant and
variable mesh sizes (5), and using both central- and forward-
difference approximations. For a sphere the assigned mesh system
corresponded to a series of spherical surfaces at r=r; for j=1,
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. . ., N, where r, = 0 is the center and ry is the outer surface of the

o - . d
sphere. The space derivatives of the concentrations <—0> and
i

2
(g—g) at a point (i, j) in time and space are then given by
L
0+(i, j + 1) (Ar)? = 6,36, j — 1) (Ary)*
() - — 0,1 D[(Ar)? = (Ar)7] g7y
or i Arj Arj_l(Arj + ATJ_I)
GA(i,j + 1) Arj_l -+ BA(i,j - ].) Arj
ar? i 0.5 Ar,- Arj_, (AT]‘ + Ar,-_l)

where Ar;= 1, —r;forr=1, ..., N— 1. Again, i and j refer to
time and space variables, respectively.

The finite-difference forms referred to in the above equations
were obtained by truncating Taylor-series expansions of the func-
tions at the appropriate point. The central-difference forms are
accurate to the order of A%, and the forward-difference forms not
given but used in some calculations are accurate to the order of A.

Equal radial increments in the case of a sphere mean unequal
volume increments. Calculations were made with two types of
spacing, constant mesh size and variable mesh size, giving con-
stant volume increments of the sphere. In the latter case, the neces-
sary values of Ar; in Eqgs. (27) and (28) were calculated from

3
37t — ) = 3 (29)

Once the number of increments had been decided, the values
of the radii and hence Ar; were calculated.

In the case of constant mesh size, the volume increment V; is

given by

V=370 = G- 1Y (72) (30)

At the center of the sphere (36/dr)=0 and r=0, so the terms
(2/1)(98,4/87) and (2/r)(96s/dr) are indeterminate as such. How-
ever, writing a Taylor-series expansion of 46/dr about the center
gives

20(t, Ar) _ 00(1,0) _ \ 96(t,0)

or ar or?
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Hence in the limit as Ar — 0, (1/Ar)[a6(dr)/or] becomes 020/1* at
the center. Therefore, in Eqs. (17) and (18), (820,/9r%) +[(2/r)(36,4/dr)]
was replaced by 3(a%0,/312) and (8%205/31%) + [(2/r)(96y/01)] was re-
placed by 3(8%0s/0r) at j = 1.

The finite-difference forms of the equations for diffusion into a
sphere, corresponding to Eqs. (25) and (26) for diffusion into a slab,
follow in an equally straightforward manner from Eqs. (17) and (18)
and from (19) and (20) and are not given in detail.

The calculation of concentration profiles within the slab or
sphere may be made for successive times from given initial con-
centration profiles by use of the finite-difference equations and
appropriate values of the constants Ly, Ly, and T and of the dimen-
sions of the slab or sphere, X(=xy) or R(=ry), respectively. The re-
sults of such calculations, however, are of greatest general utility
when expressed in generalized dimensionless form, and this has
been done in the calculations of this paper. The concentrations 6
are already dimensionless in the preceding equations. Distances
were made dimensionless by normalizing to the half-thickness
of the slab, X, or the radius of the sphere, R, and expressed as
X =x/X and F=1r/R. A dimensionless time was introduced by the
relations

RTL At RTL At
T= 72— or T= T (31)

In terms of the quantities actually used in the calculations, the
dimensionless time of Eq. (31) was expressed in slightly different
torms for the two cases of constant mesh-size spacing and variable
mesh-size spacing. For constant mesh-size Spacing,

n
TZ(Z\]—_TF AJ‘(I‘) (32)

where n = number of time increments
N — 1 = number of mesh increments
Ay = RTL, At/(Ax)? or BTL, At/(Ar)?

For a variable mesh-size spacing the quantity #TL,/ At/R* was
treated as a constant in the calculations so that = n#TL, At/R%

Determination of Total Uptake by Integration of
Concentration-Distance Profiles

In many experimental situations the quantities of principal
interest are the total amounts of the two components that are ad-
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sorbed at any one time. The total uptake of material is determined
by appropriate integration of the concentration profile over the
thickness of the slab or the radius of the sphere. To obtain these
integrals in the present calculations, a trapezoidal summation was
used and the total quantities adsorbed, Q, were expressed in nor-
malized form relative to the maximum capacity of the slab or sphere
(i.e., Q =1 for 6 = 1 throughout the structure).

Choice of Mesh for Calculations of Spherical Diffusion

As indicated previously, calculations for binary diffusion into
a sphere were carried out using two types of mesh spacing: a con-
stant mesh spacing and one corresponding to equal increments of
volume. A number of exploratory calculations were carried out to
investigate the effects of changes in the type of mesh, in the num-
ber of mesh increments, in the method of calculating differences,
and (see the following section) in the magnitude of the time
increment.

The effects of different mesh systems may be assessed most
readily from an examination of the curves of uptake against square
root of time; for any diffusion process these plots are expected to be
initially linear from the origin. Figure 1 shows a number of such
plots for diffusion into a sphere with a ratio of constants A,/B, =
Ly/Ly =200 and surface boundary conditions of 6, =0.05 and
65 = 0.90. Constant spacing of 10 equal increments using forward-
difference and central-difference forms together with variable
spacing (equal volumes) of 10 and 20 increments decreasing in
size from the center of the sphere to the surface were investigated.
Curves I and II, which were obtained using a mesh of constant
spacing, are concave upward at small times. The values obtained
for component A appear to be too small and the values for com-
ponent B too large, so the curves for B appear to intersect the Q
axis at a significant positive value. Apart from the error introduced
from the finite-difference approximation, the major error arises
from the integration by the trapezoidal rule. In a short time compo-
nent A reaches a maximum concentration near the surface of the
sphere (see Fig. 3); the concentration curve is markedly peaked
within a distance of one or two mesh increments and trapezoidal
integration is least accurate here. In addition, from Eq. (30) it can
be seen that the increments close to the surface represent con-
centric spheres of greater volume than increments close to the
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FIG. 1. Effect of mesh size and mesh spacing on curves of uptake against

square root of time (both quantities in dimensionless form) tor diffusion into

a sphere, 8, = 0.05, 6, = 0.90 at the surface, La/Ly = 200. 1, 10 equal inter-

vals forward differences; II, 10 equal intervals, central differences; 111,

variable spacing, 10 intervals, central differences; IV, variable spacing,
20 intervals, central differences.

center of the sphere. Thus any error which results in poor resolu-
tion in increments close to the surtace is additionally magnified
in the calculation of the total uptake. A trapezoidal summation
tends to underestimate the uptake of A in the region of the maxi-
mum in concentration and to overestimate the uptake of B, for
which the concentration profile is curved in the opposite sense.
The calculations in this instance show little distinction between
the use of forward differences {curve I) and central differences
(curve II) in the first derivatives, although the latter form is more
accurate.

The use of a variable mesh with the same number of spaces leads
to a significant improvement (curve III). The concavity of the curve
for component A is decreased, probably because of better resolu-
tion of the maximum in the concentration curve, so the value of the
summation becomes larger. For the same reason the curve for com-
ponent B more nearly extrapolates to the origin.
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The use of a decreased mesh size should lead to better resolution
of the concentration profiles and hence to a more reliable determi-
nation of the amount adsorbed. Curves IV in Fig. 1, based on a
variable mesh of 20 increments, show significant improvement in
linearity at small times. To reduce computation times and to get
a wider range of results for a qualitative comparison it was con-
sidered more practical to use a 10-increment, variable-size mesh.
But for the quantitative comparisons a 20-increment system was
used.

Diffusion into a plane slab does not involve such errors; equal
space increments give equal volume increments, and no additional
magnification of the error is involved in summation because of
unequal volumes.

Stability

Approximating a partial differential equation with a finite-
difference equation introduces errors into its solution, the size
of which are determined by the A(x, r), At, and the degree of the
approximation. These errors are propagated in both the time and
space dimensions, and for a valid solution it is necessary that this
propagation does not result in a significant accumulation of error
with the increase in calculation. Otherwise the calculations will
eventually accumulate errors larger than the solution values, and
the system is then termed unstable. In simpler systems of equations
it is possible to assume a random error and to determine the limits
of Ax, etc., for which the solutions are stable, but for the present
system it was necessary to determine the limits by experiment.

It was decided that a reasonable mesh spacing from the point of
view of resolution and computation time would be 10 spaces and
the majority of computations have been made with this number.
The constants in the equations Ay, By were chosen for their
largest value while maintaining a stable solution. This meant that
the value of At was made as large as possible.” For example, with
a 10-space mesh, an infinite slab with L,/Ly = 200 and 6, = 0.05,
0 = 0.90 could be solved with A, = 0.1 and B, = 0.0005 (A,/B, =
200); for L,/Lg = 2, the values of A, and B, were 0.05 and 0.025.

* The work of Funk and Houghton (6) on the solution of two coupled nonlinear
partial differential equations indicated that the optimum At should be the maximum
allowabie for stability.
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Coefficients greater than these caused the solutions to become
unstable.

The first differential in a second-order differential equation is
a frequent source of instability in its finite-difference form. When,
as in the case of spherical diffusion, the combination (1/r)(a6/dr)
occurs, the error is magnified as r — 0. Thus the solution becomes
unstable for relatively smaller time increments than is possible in
the case of slab diffusion. The transformation U = 1/r eliminates
the (1/r)(96/dr) terms [Eqgs. (20) and (21)], and combined with the
variable-mesh-size system these factors produced stability for
practical time increments which otherwise was not found possible
for L,/Lg < 200. This transformation was used for all calculations
of diffusion into a sphere with variable mesh size.

RESULTS AND DISCUSSION

Calculations were carried out using a 20K IBM 1620 digital com-
puter.” In all cases component A was taken to be the component
with higher diffusivity; the ratio of diffusivity of the two compo-
nents, La/Lg, was varied between 2 and 200. The boundary con-
dition of near saturation, 6, + 65 = 0.95, was considered to repre-
sent the situation of greatest interest, in which competition of the
two species for the available surface would be high. The different
situations investigated are summarized in Table 1 and selected
results are given in the figures.

The Effect of the L,/Ly Ratio

The primary effect of an increase in the L,/Lg ratio shows the
expected behavior of the faster-moving species A, advancing ahead
of B into the empty adsorbent and approaching local concentrations
corresponding to the adsorption of A alone at the same partial pres-
sure. The extent to which A is able to advance ahead of B and
achieve its temporary high concentration is dependent upon the
relative diffusion coefficients. Figures 2 and 3 show concentration
profiles for L,/Lg ratios of 2 and 200 for diffusion into a sheet and
into a sphere under boundary conditions of 8, = 0.05 and ¢ = 0.90.
The values of dimensionless time 7, corresponding to each curve,
are all comparable and are proportional to the real diffusion time

® The computer programs written in FORTRAN, together with selected results
for all cases of Table 1, are included in the material that has been deposited.
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TABLE 1
Summary of Numerical Investigations

Boundary conditions Relative Mesh size
diffusivities No. of Ax or Ar
N Oy Ba+6g 04/08 La/Lg center to surface
Diffusion into a Plane Sheet
1 0.05 0.90 0.95 18 2 10
2 0.05 0.90 0.95 18 10 10
3 0.05 0.90 0.95 18 200 10
4 0.475 0.475 0.95 1 2 10
5 0.855 0.095 0.95 0.11 2 10
Diffusion into a Sphere

6 0.05 0.90 0.95 18 2 10
7 0.05 0.90 0.95 18 10 10
8  0.05 0.90 0.95 18 200 10
9 0.05 0.90 0.95 18 200 20
10 0.05 0.05 0.10 1 2 10
11 0.475 0.475 0.95 1 2 10
12 0.855 0.095 0.95 0.11 2 10

“ Using the conditions set out in 8, several investigations were made on the effect
of different forms of the first derivative, e.g., as forward and central differences
using a mesh of constant spacing, i.e., unequal volume increments.

for the A component. Thus in a comparison of the curves for ratios
of 2 and 200, component A may be considered to represent the same
substance in each case, whereas component B refers to substances
having diffusivities 3 and =45 that of A. The lower the diffusivity of
B (e.g., La/Lg = 200), the more chance A has to build up to a maxi-
mum concentration ahead of B.

The curves of total uptake, Figs. 4 and 5, show the increasing
temporary advantage for component A as Ly decreases. These
curves refer to the case where B is the major component at equi-
librium and as the diffusivity of B decreases, component A has a
longer time to accumulate ahead of B. Consequently, the maxi-
mum in A is greater and is attained at a greater time.

The differences between planar flow and spherical flow are per-
haps best seen by comparing Figs. 4 and 5. Diffusion into the center
of a sphere compared with a plane, for the same L,/Ly ratio, is much
more rapid, as a result of converging flux lines for the sphere. It is
interesting to note that the maximum concentration of A for a given
diffusion ratio is approximately the same for planar and spherical
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FIG. 2. Binary diffusion into an infinite plane slab. Concentration-distance

profiles for various values of dimensionless time, 7. Boundary conditions

(concentrations at external surface of slab) held constant at values shown

for # = 1. Relative diffusivities, Ls/Ly, as indicated. Calculations using a
uniform mesh of 10 intervals with central differences.
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FIG. 4. Binary diffusion into a plane slab, uptake against square root of time

(dimensionless). Boundary values 8, = 0.05; 8; = 0.90; relative diffusivities

L4/Lg as indicated. The lowermost curve is for the uptake of A alone from

a boundary condition 6, = 0.05.

flow. Figure 6 shows a comparison between flow into a plane slab
and a sphere for L,/Lg = 200 and boundary concentrations of 6, =
0.05 and 65 = 0.90 in both cases. The maximum concentration of
component A for the spherical case is achieved in about a quarter
of the time taken for the planar case.

The relative diffusivity of the more rapid component A has little
effect on the uptake of the slower component B, particularly when
the slower component is the more strongly retained at equilibrium.
This is seen in Fig. 7, which shows the uptake of B in the presence
of different A components of diffusivities 2 and 200 times that of B.

The Effect of Boundary Conditions

Figures 8 and 9 show that the temporary maximum in A relative
to the equilibrium value is larger when A is the minor component
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at equilibrium and when the total surface coverage at equilibrium
is high. It is interesting, however, that a slight maximum in A is
observed even when A is the major component (6, = 0.855 and
0s = 0.095). In case II of Fig. 9, corresponding to equilibrium con-
centrations of each component of 0.05, the maximum in A has dis-
appeared. A comparison of Figs. 8 and 9 shows that the time scale
for spherical flow as noted before is, in effect, contracted in com-
parison to planar flow; the maxima in amounts adsorbed occur
earlier in Fig. 9 than in Fig. 8. The magnitude of the peaks is much
the same. In addition, the final equilibrium condition is achieved
in the same time for all the boundary conditions for one type of
diffusion. For the plane this occurs at 7'/* ~ 1.5, for the sphere,
at V2 ~ 0.7.

1.0 ] :

UPTAKE, Q

0 5 10 15 20

/TIME, /T

FIG. 5. Binary diffusion into a sphere, uptake against square root of time

(dimensionless). Boundary values, 8, = 0.05, 6; = 0.90; relative diffusivities

La/Lg as indicated. The lowermost curve is for the uptake of A alone from
a boundary condition of 8, = 0.05.
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Comparison with Experiment

The mathematical model proposed in this paper may be used to
predict sorption behavior for comparison with previously published
experimental results for the sorption of nitrogen-methane mixtures
by molecular sieve 4A (1). The most complete set of experimental
data refer to a sample of the zeolite powder activated at 400°C.
Table 2 lists the monolayer capacities and the diffusion coefficients
for the uptake of the individual pure gases at two temperatures.
Using these values, the curves of uptake were calculated for the
four situations included in Fig. 5 of (I): sorption from 10% and
from 50% gaseous nitrogen-methane mixtures at 0 and —79°C. The
boundary values, 6, were taken as the experimentally observed lim-
iting equilibrium values of the uptake expressed as fractions of the
monolayer capacities. The agreement with experiment was good
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FIG. 8. Binary diffusion into a plane slab. Uptake against square root of time

(dimensionless). Ly/Ly =2. Effect of various boundary concentrations:

Curve L: 8,, 005; 65, 0.90. Curve II: 8,, 0.855; 6z = 0.095. Curve I1I: 8, =
0.475; 6; = 0.475.
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FIG. 9. Binary diffusion into a sphere, uptake against square root of time

(dimensionless). L,/Lg = 200. Effect of various boundary conditions: Curve

I: 6,=0.05; 8, =0.90. Curve II: 8, =0.05; 63=0.05. Curve III: 0, =
0.855; 65 = 0.095. Curve 1V: 6, = 0.475; 6g = 0.475.

for the measurements made at 0°C, where the sum of the uptakes
of the two gases was less than one quarter of the monolayer capacity
of the zeolite, but was quantitatively rather poor for the measure-
ments at —79°C, where the total uptake was over 98% of the mono-
layer capacity. The comparison is given in parts (a) and (b) of Fig,
10 for two cases that illustrate these situations. Normalized uptake,
Q, is plotted against the square root of real time. The calculated
curves were determined using the L, and 7/t values of Table 2 and
the boundary conditions calculated from the average monolayer
capacities: 8y, and ¢y, of 0.015 and 0.238 for 10% N, at 0°C; 0.063
and 0.921 for 10% N, at —79°C. A variable-size mesh of 20 intervals
was used in the calculations.

The rather poor fit between the calculated and experimental
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TABLE 2
Sorption of Nitrogen and Methane by Molecular Sieve 4A (2)
(Powder Activated at 400°C; Mean Particle Radius = 2.5 x 10™° ¢m)

Langmuir monolayer, Diffusion coefficient,
Ci» ml(STP)/g RTL, cm?[sec
Temp., T/t = #TL,/R?,
°C N. CH, Av. N, CH,  Ly/Len, sec!
0 86.8 104.0 954 1.29 x 1072 7.87 x 10~ 16.4 2.06 < 10*

=719 77.2 795 784 3.42x107" 1.37x 107 21.8 5.47 x 107#

values in Fig. 10 (b) probably is relatéd to the great sensitivity of
the calculations to the factor 1/(1 — 6, — 0y), which increases rap-
idly as (6, + 65) — 1. For example, a decrease of only 3% in (6, + 6s)
from the value 0.984 used in the calculations to 0.95 means a de-
crease in 1/(1 — 6, — 6g) from 62.5 to 20—a change of 200%. Con-
sideration of the data of (2) suggests that the values of Cy used to
determine the 6’s could easily be uncertain by such an amount; the
isotherm measurements were taken considerably below saturation,
and although the Langmuir equation was a reasonable fit to these
data, some departure at high coverages would not be unexpected.
Furthermore, different monolayer capacities resulted for the two
adsorbates, although the theory requires only a single value. The
curves in Fig. 10 (c) illustrate the considerable improvement in
agreement with experiment obtained by taking boundary condi-
tions of 6, = 0.05 and 8y = 0.90, giving a total (8, + 6z) = 0.95. The
curves were calculated for the slightly different ratio Ly/Ly = 25
instead of 21.8, but the additional effect of this change is minor. In
view of the limitations of the model, particularly concerning the
quantitative application of the Langmuir isotherm, any further
adjustment of parameters is not warranted.

We feel that, on the whole, the model discussed in this paper
gives a satisfactory description of binary adsorption by zeolites,
in which the rate of adsorption is governed by activated surtace
diffusion. The temporary maximum in the uptake of the more rap-
idly diffusing species is clearly shown. The behavior near satura-
tion is sensitive to the precise form of the adsorption isotherm,
and it is possible that an extension of this approach to other systems
might require a modification of the development to incorporate
some other form of adsorption isotherm. The good agreement be-
tween the calculated and experimental values of the uptake of each
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component gives confidence that the calculated concentration pro-
files (which are inherently difficult or impossible to measure) may
also be reasonable.

Nomenclature

A, B constants for a given mesh system
b constant in Langmuir equation
C concentration of adsorbed material
i, mesh points i (time), j (space)
J  flux of sorbed material
L  proportionality constant in diffusion equation
N number of mesh points
n number of time increments
p partial pressure
R  gas constant
R ry = radius of sphere
r distance from surface of sphere
7 r/R
T absolute temperature
t time
\%4 volume
X xy = slab half-thickness
x distance from center to surface of a plane infinite slab
x x/X
Ar, Ax  space increments for sphere and plane infinite sheet
At time increments
] ratio of concentration of adsorbate in structure to ad-
sorbate concentration in monolayer
u  chemical potential of adsorbate relative to pure gas at
1 atm and same temperature
Subscripts
A component A
B component B
i, mesh points i (time), j (space)
M  monolayer coverage of surface
N number of locations
r referring to sphere
x referring to slab
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